Menú

División Polímeros Biomédicos
Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP - CONICET)

Av. Colón 10850
B7606BWV Mar del Plata
Argentina
Tel.: +54 223 626 0600

Ultimas Publicaciones

Nanofibrous scaffolds for skin tissue engineering and wound healing applications

G. Rivero, M.D. Popov Pereira da Cunha, P.C. Caracciolo, G.A. Abraham. Nanofibrous scaffolds for skin tissue engineering and wound healing applications. In: Tissue engineering using ceramics and polymers, 3ed. A.R. Boccaccini, P.X. Ma, L. Liverani Eds., Woodhead Publishing, Elsevier. Chapter 17, pp. 645-681, 2022. ISBN: 978-0-12-820508-2 (print) ISBN: 978-0-12-820579-2 (online). doi.org/10.1016/B978-0-12-820508-2.00020-9


Immobilization of horseradish peroxidase onto electrospun polyurethane nanofiber matrices

D.A. Morales Urrea, P.C. Caracciolo, P.M. Haure, E.M. Contreras. Polymers for Advanced Technologies, 2021. In Press.

 


A modular platform based on electrospun carbon nanofibers and poly(N‑isopropylacrylamide) hydrogel for sensor application

S. Bongiovanni Abel, M.V. Martinez, M.M. Bruno, C.A. Barbero, G.A. Abraham, D.F. Acevedo. Polymers for Advanced Technologies, 2021. In Press.

doi.org/10.1002/pat.5473


Zuccagnia punctata Cav. essential oil into poly(ε-caprolactone) matrices as a sustainable and environmentally friendly strategy bio-repellent against Triatoma infestans (Klug) (Hemiptera, Reduviidae)

S. López, A. Tapia, J. Zygadlo, R. Stariolo, G.A. Abraham, P.R. Cortez Tornello. Molecules, 26, 4056-4067, 2021.

doi.org/10.3390/molecules26134056.

PDF Version: https://www.mdpi.com/1420-3049/26/13/4056/pdf

HTML Special Issue: https://www.mdpi.com/journal/molecules/special_issues/Insecticide_Acaricide



Lysine-oligoether-modified electrospun poly(carbonate urethane) matrices for improving hemocompatibility response.

A. Pepe, M.G. Guevara, G.A. Abraham, P.C. Caracciolo. Polymer Journal, 2021. In Press.


Photocatalytic reduction of hexavalent chromium from aqueous solutions using polymeric microfibers surface modified with ZnO nanoparticles

G. Morales, A. Castro-Ruiz, H. Rodríguez Tobías, G.A. Abraham, G. Rivero, S.A. Lozano-Morales. Fibers and Polymers, 2021. ISSN: 1229-9197. doi.org/10.1007/s12221-021-0217-5


Novel three-dimensional printing of poly(ester urethane) scaffolds for biomedical applications

N. J. Lores, X. Hung, M.H. Talou, G.A. Abraham, P.C. Caracciolo. Polymers for Advanced Technologies, 2021. In Press.

doi.org/10.1002/pat.5342


Evaluation of human umbilical vein endothelial cells growth onto heparin-modified electrospun vascular grafts

P.C. Caracciolo, P. Diaz-Rodriguez, I. Ardao, D. Moreira, F. Montini-Ballarin, G.A. Abraham, A. Concheiro, C. Alvarez-Lorenzo.  International Journal of Biological Macromolecules, 2021. In Press.

doi.org/10.1016/j.ijbiomac.2021.03.008


Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration

Ana A. Aldana, Sofie Houben, Lorenzo Moroni, Matthew B. Baker, Louis M. Pitet. ACS Biomater. Sci. Eng. 2021.  doi.org/10.1021/acsbiomaterials.0c01749


Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties

A.A. Aldana, F. Valente, R. Dilley, B. Doyle. Bioprinting 21,  e00105, 2020.

10.1016/j.bprint.2020.e00105


14-3-3epsilon protein-loaded 3D hydrogels favor osteogenesis

A.A. Aldana, M. Uhart, G.A. Abraham, D. Bustos, A.R. Boccaccini. Journal of Materials Science: Materials in Medicine, 31, 105, 2020.

doi.org/10.1007/s10856-020-06434-1


Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products

J.A. Silva, P.R. De Gregorio, G. Rivero, G.A. Abraham, M.E. Fatima Nader-Macias.
European Journal of Pharmaceutical Sciences, 156, 105563, 2021.

doi.org/10.1016/j.ejps.2020.105563


Development and validation of a mechanistic model for the release of embelin from a polycaprolactone matrix

I.T. Seoane, P.R. Cortez Tornello, L. Silva, P. Tomba, G.A. Abraham, A. Cisilino. Polymer Testing, 91, 106855, 2020.  doi.org/10.1016/j.polymertesting.2020.106855


Development of electrospun photo-crosslinkable soy protein-based scaffolds

M.D. Popov Pereira da Cunha, A.A. Aldana, G.A. Abraham. Materials International, 2020. Special Issue “Current trends in biopolymer-based materials”. In Press


Latest advances in electrospun plant protein-based scaffolds for biomedical applications

M.D. Popov Pereira da Cunha, P.C. Caracciolo, G.A. Abraham. Current Opinion in Biomedical Engineering, 18, 100243, 2021.
doi.org/10.1016/j.cobme.2020.07.003


Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions

S. Bongiovanni, F. Montini Ballarin, G.A. Abraham. Nanotechnology, 31, 172002, 2020.
doi.org/10.1088/1361-6528/ab6ab4


Nanofibrous membranes as smart wound dressings that release antibiotics when an injury is infected

G. Rivero, M. Meuter, A. Pepe, M.G. Guevara, A.R. Boccaccini, G.A. Abraham. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 587, 124313, 2020.
doi.org/10.1016/j.colsurfa.2019.124313


Editorial Corner – A personal view. Small-diameter polymer-based vascular grafts: towards a biomimetic mechanical response

G.A. Abraham, P.M. Frontini. eXPRESS Polymer Letters, 14(2), 102-102, 2020. ISSN 1788-618X.
doi.org/10.3144/expresspolymlett.2020.9


Multiscale constitutive model with progressive recruitment for nanofibrous scaffolds

D.E. Caballero, F. Montini Ballarin, J.M. Gimenez, S.A. Urquiza.
Journal of the Mechanical Behavior of Biomedical Materials, 38, 225-234, 2019
doi.org/10.1016/j.jmbbm.2019.06.017

 


Core-sheath fibrous membranes based on poly(acrylonitrile-butadiene-styrene), poly(acrylonitrile) and zinc oxide nanoparticles meant for photo-reduction of Cr (VI) ions in aqueous solutions

Castro-Ruíz, H. Rodríguez-Tobías, G.A. Abraham, G. Rivero, G. Morales.  Journal of Applied Polymer Science, 137, 48429, 2020.
doi.org/10.1002/app.48429


14-3-3ε Protein-immobilized PCL-HA electrospun scaffolds with enhanced osteogenicity

G. Rivero, A.A. Aldana, Y. Frontini López, L. Liverani, A.R. Boccaccini, D. Bustos, G.A. Abraham.  Journal of Materials Science: Materials in Medicine, 30, 99, 2019.
doi.org/10.1007/s10856-019-6302-2


Electrospun ethylcellulose-based mats with insect-repellent activity

V. Muñoz, F. Buffa, F. Molinari, L.G. Hermida, J.J. García, G.A. Abraham. Materials Letters, 2019. In Press. ISSN: 0167-577X.
doi.org/10.1016/j.matlet.2019.06.091


Dexamethasone-loaded chitosan beads coated with a pH dependent interpolymer complex for colon-specific drug delivery

J. García-Couce, N. Bada-Rivero, O. López-Hernández, A. Nogueira, P.C. Caracciolo, G.A. Abraham, J. Ramón Hernández, C. Peniche.  International Journal of Polymer Science, Article ID 4204375, 2019. ISSN: 1687-9422.

doi.org/10.1155/2019/4204375


The role of emulsion parameters in tramadol-sustained release from electrospun mats

R. Giannetti, G.A. Abraham, G. Rivero. Materials Science and Engineering Part C, 99, 1493-1501, 2019.
doi.org/10.1016/j.msec.2019.02.085


Effect of benign solvents composition on poly(ε-caprolactone) electrospun fiber properties

S. Bongiovanni Abel, L. Liverani, A.R. Boccaccini, G.A. Abraham. Materials Letters, 245, 86-89, 2019.

doi.org/10.1016/j.matlet.2019.02.107



Effect of poly (l-lactic acid) scaffolds seeded with aligned diaphragmatic myoblasts overexpressing connexin-43 on infarct size and ventricular function in sheep with acute coronary occlusion

C. Giménez, F. Olea, P. Locatelli, R. Dewey, G.A. Abraham, F. Montini Ballarin, M.R. Bauzá, A. Hnatiuk, A. de Lorenzi, A. Neira Sepúlveda, M. Embon, L. Cuniberti, A. Crottogini.
Artificial Cells, Nanomedicine and Biotechnology. Article ID: IANB 1508029. 2018
doi.org/10.1080/21691401.2018.1508029


Electrospun scaffolds with enlarged pore size: porosimetry analysis

P.R. Cortez Tornello, P.C. Caracciolo, J.I. Igartúa Roselló, G.A. Abraham. Materials Letters, 227, 191-193, 2018.

doi.org/10.1016/j.matlet.2018.05.072


Nuevas estrategias para el desarrollo de injertos vasculares

F. Montini Ballarin, P.C. Caracciolo, G.A. Abraham. Nuevas estrategias para el desarrollo de injertos vasculares, en: La Bioingeniería en la Argentina, R.S. Sánchez Peña y M. Rosen (Editores). Academia Nacional de Ciencias Exactas, Físicas y Naturales, Argentina. ISBN: 978-987-4111-13-5. Serie Publicaciones Científicas N°13, Capítulo 2, pp. 22-43, 2017.


Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly(L-lactic acid) scaffolds for potential use in cardiac regeneration

C.S. Giménez, P. Locatelli, F. Montini Ballarin, A. Orlowski, R. Dewey, G.A. Abraham, A. Aiello, M.R. Bauzá, L. Cuniberti, D. Olea, A. Crottogini.  Cytotechnology, 70(2), 651-664, 2018.

doi.org/10.1007/s10616-017-0166-4


Multilayered electrospun nanofibrous scaffolds for tailored controlled release of embelin

P.R. Cortez Tornello, G.E. Feresin, A. Tapia, T.R. Cuadrado, G.A. Abraham. Soft Materials, 16(1), 51-61, 2018. ISSN: 1539-445X.

dx.doi.org/10.1080/1539445X.2017.1398173


Temperature-sensitive biocompatible IPN hydrogels based on poly(NIPA-PEGdma) and photocrosslinkable gelatin methacrylate

A.A. Aldana, M.I. Rial-Hermida, G.A. Abraham, A. Concheiro, C. Álvarez-Lorenzo. Soft Materials, 15(4), 341-349, 2017. ISSN: 1539-445X.

dx.doi.org/10.1080/1539445X.2017.1378677


Current advances in electrospun gelatin-based scaffolds for tissue engineering applications

A.A. Aldana, G.A. Abraham. International Journal of Pharmaceutics, 523 (2), 441-453, 2017.

dx.doi.org/10.1016/j.ijpharm.2016.09.044


Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts

P.C. Caracciolo, M.I. Rial-Hermida, F. Montini-Ballarin, G.A. Abraham, A. Concheiro, C. Álvarez-Lorenzo. Materials Science and Engineering Part C, 75, 1115-1127, 2017.

dx.doi.org/10.1016/j.msec.2017.02.151


Effect of processing techniques on new PCL-embelin microparticles of biomedical interest

P.R. Cortez Tornello, A. Tapia, G.E. Feresin, M. Dzieciuch, T.R. Cuadrado, G.A. Abraham. Advances in Polymer Technology, 37(6), 1570-1580, 2018.

dx.doi.org/10.1002/adv.21814


Amphiphilic electrospun scaffolds of PLLA-PEO-PPO block copolymers: preparation, characterization and drug-release behaviour

L.M. D. Loiola, P.R. Cortez Tornello, G.A. Abraham, M.I. Felisberti. RSC Advances, 7, 161-172, 2017.

dx.doi.org/10.1039/c6ra25023h


HMDSO-plasma coated electrospun fibers of poly(cyclodextrin)s for antifungal dressings

A. Costoya, F. Montini-Ballarin, J. Llovo, A. Concheiro, G.A. Abraham, C. Alvarez-Lorenzo. International Journal of Pharmaceutics. 513, 518-527, 2016.
dx.doi.org/10.1016/j.ijpharm.2016.09.064


Design of a smart nanoformulations based on levofloxacin-loaded nanostructured lipid carriers (NLC) and DNase for cystic fibrosis lung delivery

G.A. Islan, P.R. Cortez Tornello, G.A. Abraham, G.R. Castro, N. Duran. Colloids and Surfaces B: Biointerfaces, 143, 168-176, 2016.
dx.doi.org/10.1016/j.colsurfb.2016.03.040


In vitro degradation of electrospun poly(L-lactic acid)/segmented poly(ester urethane) blends

F. Montini-Ballarin, P.C. Caracciolo, G. Rivero, G.A. Abraham. Polymer Degradation and Stability. In Press. 2016.

dx.doi.org/10.1016/j.polymdegradstab.2016.02.007


Mechanical behavior of polyurethane-based small-diameter vascular grafts

F. Montini Ballarin. G.A. Abraham, P.C. Caracciolo. Mechanical behavior of polyurethane-based small-diameter vascular grafts, en: Advances in Polyurethane Biomaterials. J. Guan, S.L. Cooper (Editors). Elsevier Ltd. Chapter 15. pp. 451-477, 2016. ISBN: 978-0-08-100614-6 (print). ISBN: 978-0-08-100622-1 (online). 690 p.


Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts

F. Montini-Ballarin, D. Calvo, P.C. Caracciolo, F. Rojo, P.M. Frontini, G.A. Abraham, G. Guinea-Totuero. Journal of the Mechanical Behavior of Biomedical Materials, 60, 220-233, 2016.

dx.doi.org/10.1016/j.jmbbm.2016.01.025


Micro/nanofiber-based structures for tissue engineering applications: potential and current challenges

P.R. Cortez Tornello, F. Montini Ballarin, P.C. Caracciolo, G.A. Abraham. Micro/nanofiber-based structures for tissue engineering applications: potential and current challenges, en: NanoBioMaterials in Soft Tissue Engineering, Multi-Volume Set (I-XI), Volume V: Applications of NanoBioMaterials. A.M. Grumezescu (editor). Elsevier. Chapter 8. pp. 201-229, 2016. ISBN: 978-0-323-42865-1.
dx.doi.org/10.1016/B978-0-323-42865-1.00008-8


Amoxicillin-loaded electrospun nanocomposite membranes for dental applications

G. Furtos, G. Rivero, S. Rapuntean, G.A. Abraham. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(5), 966-976, 2017. ISSN: 1552-4981. Publication Online: February 2nd, 2016.
dx.doi.org/10.1002/jbm.b.33629


Biomateriais aplicados ao desenvolvimento de sistemas terapêuticos avançados / Biomateriales Aplicados al Diseño de Sistemas Terapéuticos Avanzados

– P.C. Caracciolo, G.A. Abraham. “Poliuretanos Biomédicos: Síntesis, Propiedades y Aplicaciones” Módulo I: “Biomateriales” Capítulo 4.
– F. Montini Ballarin, P.R. Cortez Tornello, G.A. Abraham. “Nanofibras Electrohiladas para Usos Terapéuticos” Módulo II: “Tecnologías aplicadas al diseño y producción de sistemas terapéuticos” Capítulo 9.

H.C. de Souza, M.E.M. Braga, A. Sosnik, Editores. Universidade de Coimbra, Portugal. ISBN 978-989-26-0880-8, Digital version ISBN: 978-989-26-0881-5. 766 p. 2015.


Optimization of poly(L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures.

F. Montini Ballarin, P.C. Caracciolo, E. Blotta, V.L. Ballarin, G.A. Abraham. Materials Science and Engineering Part C, 42, 489-499, 2014.

dx.doi.org/10.1016/j.msec.2014.05.074


Random and aligned PLLA:PRGF electrospun scaffolds for tissue engineering

L. Díaz-Gómez, F. Montini Ballarin, G.A. Abraham, A. Concheiro, C. Alvarez-Lorenzo.  Journal of Applied Polymer Science, 132, 5,  2015.

dx.doi.org/10.1002/app.41372